adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 4 of 22

Explore more Topics under Data Structures and Algorithms

Q31.
What is the output of the following naive method used to find the maximum sub-array sum?
#include<stdio.h>
int main()
{
     int arr[1000] = {-2, -5, 6, -2, 3, -1, 0,-5, 6}, len = 9;
     int cur_max, tmp_max, strt_idx, sub_arr_idx;
     cur_max = arr[0];
     for(strt_idx = 0; strt_idx < len; strt_idx++)
     {
	   tmp_max = 0;
	   for(sub_arr_idx = strt_idx; sub_arr_idx < len; sub_arr_idx++)
	   {
	        tmp_max += arr[sub_arr_idx];
	        if(tmp_max > cur_max)
	        cur_max = tmp_max;
	   }
     }
     printf("%d",cur_max);
     return 0;
}
Discuss
Answer: (c).7
Q32.
What is the time complexity of the divide and conquer algorithm used to find the maximum sub-array sum?
Discuss
Answer: (c).O(nlogn)
Q33.
What is the space complexity of the divide and conquer algorithm used to find the maximum sub-array sum?
Discuss
Answer: (b).O(1)
Q34.
Which line should be inserted in the blank to complete the following dynamic programming implementation of the maximum sub-array sum problem?
#include<stdio.h>
int max_num(int a,int b)
{
      if(a> b)
  return a;
      return b;
}
int maximum_subarray_sum(int *arr, int len)
{
      int sum[len], idx;
      sum[0] = arr[0];
      for(idx = 1; idx < len; idx++)
  sum[idx] = _______________________;
      int mx = sum[0];
      for(idx = 0; idx < len; idx++)
  if(sum[idx] > mx)
      mx =sum[idx];
  return mx;
}
int main()
{
      int arr[] = {-2, -5, 6, -2, 3, -1, 0,-5, 6}, len = 9;
      int ans = maximum_subarray_sum(arr, len);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (a).max_num(sum[idx – 1] + arr[idx], arr[idx])
Q35.
Consider the following code snippet:
Which property is shown by line 4 of the below code snippet?
1. int sum[len], idx;
2. sum[0] = arr[0];
3. for(idx = 1; idx < len; idx++)
4.   sum[idx] = max(sum[idx - 1] + arr[idx], arr[idx]);
5. int mx = sum[0];
6. for(idx = 0; idx < len; idx++)
7.  if(sum[idx] > mx)
8.  mx =sum[idx];
9. return mx;
Discuss
Answer: (a).Optimal substructure
Q36.
Consider the following code snippet:
Which method is used by line 4 of the above below snippet?
1. int sum[len], idx;
2. sum[0] = arr[0];
3. for(idx = 1; idx < len; idx++)
4.   sum[idx] = max(sum[idx - 1] + arr[idx], arr[idx]);
5. int mx = sum[0];
6. for(idx = 0; idx < len; idx++)
7.  if(sum[idx] > mx)
8.  mx =sum[idx];
9. return mx;
Discuss
Answer: (d).Memoization
Q37.
Find the maximum sub-array sum for the following array:
{3, 6, 7, 9, 3, 8}
Discuss
Answer: (b).36
Q38.
What is the output of the following program?
#include<stdio.h>
int max_num(int a,int b)
{
     if(a> b)
	return a;
     return b;
}
int maximum_subarray_sum(int *arr, int len)
{
     int sum[len], idx;
     sum[0] = arr[0];
     for(idx = 1; idx < len; idx++)
	sum[idx] = max_num(sum[idx - 1] + arr[idx], arr[idx]);
     int mx = sum[0];
     for(idx = 0; idx < len; idx++)
	if(sum[idx] > mx)
	   mx =sum[idx];
     return mx;
}
int main()
{
     int arr[] = {-20, 23, 10, 3, -10, 11, -5},len = 7;
     int ans = maximum_subarray_sum(arr, len);
     printf("%d",ans);
     return 0;
}
Discuss
Answer: (b).37
Q39.
What is the value stored in sum[4] after the following program is executed?
#include<stdio.h>
int max_num(int a,int b)
{
      if(a> b)
	  return a;
      return b;
}
int maximum_subarray_sum(int *arr, int len)
{
      int sum[len], idx;
      sum[0] = arr[0];
      for(idx = 1; idx < len; idx++)
	   sum[idx] = max_num(sum[idx - 1] + arr[idx], arr[idx]);
      int mx = sum[0];
      for(idx = 0; idx < len; idx++)
	  if(sum[idx] > mx)
	      mx =sum[idx];
      return mx;
}
int main()
{
      int arr[] = {-2, 14, 11, -13, 10, -5, 11, -6, 3, -5},len = 10;
      int ans = maximum_subarray_sum(arr, len);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (c).22
Discuss
Answer: (c).Maximum sub-array sum

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!