adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 5 of 22

Explore more Topics under Data Structures and Algorithms

Q41.
Kadane’s algorithm uses which of the following techniques?
Discuss
Answer: (b).Dynamic programming
Q42.
For which of the following inputs would Kadane’s algorithm produce the CORRECT output?
Discuss
Answer: (d).All of the mentioned
Q43.
For which of the following inputs would Kadane’s algorithm produce a WRONG output?
Discuss
Answer: (b).{-1,-2,-3}
Q44.
Complete the following code for Kadane’s algorithm:
#include<stdio.h>
int max_num(int a, int b)
{ 
      if(a > b)
         return a; 
      return b;
}
int kadane_algo(int *arr, int len)
{	
     int ans, sum, idx;
     ans =0;
     sum =0;
     for(idx =0; idx < len; idx++)
     {
         sum = max_num(0,sum + arr[idx]);
         ans = ___________;
     }
     return ans;
}
int main()
{
     int arr[] = {-2, -3, 4, -1, -2, 1, 5, -3},len=7;
     int ans = kadane_algo(arr,len);
     printf("%d",ans);
     return 0;
}
Discuss
Answer: (d).max_num(sum,ans)
Q45.
What is the time complexity of Kadane’s algorithm?
Discuss
Answer: (b).O(n)
Q46.
What is the space complexity of Kadane’s algorithm?
Discuss
Answer: (a).O(1)
Q47.
What is the output of the following implementation of Kadane’s algorithm?
#include<stdio.h>
int max_num(int a, int b)
{
       if(a > b)
	return a;
       return b;
}
int kadane_algo(int *arr, int len)	
{
       int ans, sum, idx;
       ans =0;
       sum =0;
       for(idx =0; idx < len; idx++)
       {
	     sum = max_num(0,sum + arr[idx]);
	     ans = max_num(sum,ans);
       }
       return ans;
}
int main()
{
      int arr[] = {2, 3, -3, -1, 2, 1, 5, -3}, len = 8;
      int ans = kadane_algo(arr,len);
      printf("%d",ans);
      return 0;
}

a.

6

b.

7

c.

8

d.

9

Discuss
Answer: (d).9
Q48.
What is the output of the following implementation of Kadane’s algorithm?
#include<stdio.h>
int max_num(int a, int b)
{  
      if(a > b)
         return a;
      return b;
}
int kadane_algo(int *arr, int len)	
{
      int ans, sum, idx;
      ans =0;
      sum =0;
      for(idx =0; idx < len; idx++)
      {
	  sum = max_num(0,sum + arr[idx]);
	  ans = max_num(sum,ans);
      }
      return ans;
}
int main()
{
      int arr[] = {-2, -3, -3, -1, -2, -1, -5, -3},len = 8;
      int ans = kadane_algo(arr,len);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (d).None of the mentioned
Q49.
Consider the following implementation of Kadane’s algorithm.
What changes should be made to the Kadane’s algorithm so that it produces the right output even when all array elements are negative?

Change 1 = Line 10: int sum = arr[0], ans = arr[0]
Change 2 = Line 13: sum = max_num(arr[idx],sum+arr[idx])
1. #include<stdio.h>
2. int max_num(int a, int b)
3. {
4.     if(a > b)
5.  return a;
6.     return b;
7. }
8. int kadane_algo(int *arr, int len) 
9. {
10.      int ans = 0, sum = 0, idx;
11.  for(idx =0; idx < len; idx++)
12.  {
13.  sum = max_num(0,sum + arr[idx]);
14.  ans = max_num(sum,ans);
15.  }
16.  return ans;
17. }
18. int main()
19. {
20.    int arr[] = {-2, -3, -3, -1, -2, -1, -5, -3},len = 8;
21.       int ans = kadane_algo(arr,len);
22.   printf("%d",ans);
23.   return 0;
24. }

Discuss
Answer: (c).Both Change 1 and Change 2 are necessary
Q50.
The longest increasing subsequence problem is a problem to find the length of a subsequence from a sequence of array elements such that the subsequence is sorted in increasing order and it’s length is maximum. This problem can be solved using __________
Discuss
Answer: (d).All of the mentioned

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!