adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 8 of 22

Explore more Topics under Data Structures and Algorithms

Q71.
Consider the following recursive implementation.
Which of these arguments should be passed by the min_jumps function represented by the blanks?
#include<stdio.h>
#include<limits.h>
int min_jumps(int *arr, int strt, int end)
{
     int idx;
     if(strt == end)
	return 0;
     if(arr[strt] == 0) // jump cannot be made
	return INT_MAX;
     int min = INT_MAX;
     for(idx = 1; idx <= arr[strt] && strt + idx <= end; idx++)
     {
	  int jumps = min_jumps(____,____,____) + 1;
	  if(jumps < min)
	      min  = jumps;
     }
     return min;
}
int main()
{
     int arr[] ={1, 3, 5, 8, 9, 2, 6, 7, 6},len = 9;
     int ans = min_jumps(arr, 0, len-1);
     printf("%d\n",ans);
     return 0;
}

Discuss
Answer: (a).arr, strt + idx, end
Q72.
For a given array, there can be multiple ways to reach the end of the array using minimum number of jumps.
Discuss
Answer: (a).True
Q73.
What is the output of the following program?
#include<stdio.h>
#include<limits.h>
int min_jumps(int *arr, int strt, int end)
{
      int idx;
      if(strt == end)
 	 return 0;
      if(arr[strt] == 0) // jump cannot be made
	 return INT_MAX;
      int min = INT_MAX;
      for(idx = 1; idx <= arr[strt] && strt + idx <= end; idx++)
      {
	   int jumps = min_jumps(arr, strt + idx, end) + 1;
	   if(jumps < min)
	     min  = jumps;
      }
      return min;
}
int main()
{
      int arr[] ={1, 2, 3, 4, 5, 4, 3, 2, 1},len = 9;
      int ans = min_jumps(arr, 0, len-1);
      printf("%d\n",ans);
      return 0;
}

a.

4

b.

5

c.

6

d.

7

Discuss
Answer: (a).4
Q74.
For any array, given that at most one element is non-zero, it is ALWAYS possible to reach the end of the array using minimum jumps.
Discuss
Answer: (b).False
Q75.
Consider the following dynamic programming implementation of the minimum jumps problem.
Which of the following β€œfor” loops can be used instead of the inner for loop so that the output doesn’t change?
#include<stdio.h>
#include<limits.h>
int min_jump(int *arr, int len)
{
     int j, idx, jumps[len];
     jumps[len - 1] = 0;
     for(idx = len - 2; idx >= 0; idx--)
     {
	  int tmp_min = INT_MAX;
	  for(j = 1; j <= arr[idx] && idx + j < len; j++)
	  {
		 if(jumps[idx + j] + 1 < tmp_min)
		     tmp_min = jumps[idx + j] + 1;
	  }
	  jumps[idx] = tmp_min;
     }
     return jumps[0];
}
int main()
{
      int arr[] ={1, 1, 1, 1, 1, 1, 1, 1, 1},len = 9;
      int ans = min_jump(arr,len);
      printf("%d\n",ans);
      return 0;
}

Discuss
Answer: (d).None of the mentioned
Q76.
What is the output of the following program?
#include<stdio.h>
#include<limits.h>
int min_jump(int *arr, int len)
{
      int j, idx, jumps[len];
      jumps[len - 1] = 0;
      for(idx = len - 2; idx >= 0; idx--)
      {	
	     int tmp_min = INT_MAX;
	     for(j = 1; j <= arr[idx] && idx + j < len; j++)
	     {
		   if(jumps[idx + j] + 1 < tmp_min)
		      tmp_min = jumps[idx + j] + 1;
	     }
	     jumps[idx] = tmp_min;
      }
      return jumps[0];
}
int main()
{
      int arr[] ={1, 1, 1, 1, 1, 1, 1, 1, 1},len = 9;
      int ans = min_jump(arr,len);
      printf("%d\n",ans);
      return 0;
}

a.

7

b.

8

c.

9

d.

10

Discuss
Answer: (b).8
Q77.
What is the output of the following program?
#include<stdio.h>
#include<limits.h>
int min_jump(int *arr, int len)
{
      int j, idx, jumps[len];
      jumps[len - 1] = 0;
      for(idx = len - 2; idx >= 0; idx--)
      {	
	  int tmp_min = INT_MAX;
	  for(j = 1; j <= arr[idx] && idx + j < len; j++)
	  {
	        if(jumps[idx + j] + 1 < tmp_min)
		  tmp_min = jumps[idx + j] + 1;
	  }
	  jumps[idx] = tmp_min;
      }
      return jumps[0];
}
int main()
{
      int arr[] ={9, 9, 9, 9, 9, 9, 9, 9, 9},len = 9;
      int ans = min_jump(arr,len);
      printf("%d\n",ans);
      return 0;
}

a.

1

b.

6

c.

2

d.

7

Discuss
Answer: (a).1
Q78.
The Knapsack problem is an example of ____________
Discuss
Answer: (b).2D dynamic programming
Q79.
Which of the following methods can be used to solve the Knapsack problem?
Discuss
Answer: (d).All of the mentioned
Q80.
You are given a knapsack that can carry a maximum weight of 60. There are 4 items with weights {20, 30, 40, 70} and values {70, 80, 90, 200}. What is the maximum value of the items you can carry using the knapsack?
Discuss
Answer: (a).160

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!