adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 7 of 22

Explore more Topics under Data Structures and Algorithms

Q61.
Consider the brute force implementation of the rod cutting problem in which all the possible cuts are found and the maximum value is calculated. What is the time complexity of this brute force implementation?
Discuss
Answer: (d).O(2^n)
Q62.
You are given a rod of length 10 and the following prices.
length price

1 2

2 5

3 6

4 9

5 9

6 17

7 17

8 18

9 20

10 22

Which of these pieces give the maximum price?
Discuss
Answer: (c).{2,2,6}
Q63.
Consider the following recursive implementation of the rod cutting problem. Complete the below code.
#include<stdio.h>
#include<limits.h>
int max_of_two(int a, int b)
{
      if(a > b)
            return a;
      return b;
}
int rod_cut(int *prices, int len)
{
      int max_price = INT_MIN; // INT_MIN is the min value an integer can take
      int i;
      if(len <= 0 )
	return 0;
      for(i = 0; i < len; i++)
	 max_price = max_of_two(_____________); // subtract 1 because index starts from 0
      return max_price;
}
int main()
{
      int prices[]={2, 5, 6, 9, 9, 17, 17, 18, 20, 22},len_of_rod = 10;
      int ans = rod_cut(prices, len_of_rod);
      printf("%d",ans);
      return 0;
}

Discuss
Answer: (a).max_price, prices[i] + rod_cut(prices,len โ€“ i โ€“ 1)
Q64.
What will be the value stored in max_value when the following code is executed?
#include<stdio.h>
#include<limits.h>
int max_of_two(int a, int b)
{
       if(a > b)
         return a;
       return b;
}
int rod_cut(int *prices, int len)
{
       int max_price = INT_MIN; // INT_MIN is the min value an integer can take
       int i;
       if(len <= 0 )
          return 0;
       for(i = 0; i < len; i++)
          max_price = max_of_two(prices[i] + rod_cut(prices,len - i - 1), max_price); // subtract 1 because index starts from 0
       return max_price;
}
int main()
{
       int prices[]={2, 5, 6, 9, 9, 17, 17, 18, 20, 22},len_of_rod = 3;
       int ans = rod_cut(prices, len_of_rod);
       printf("%d",ans);
       return 0;
}

a.

5

b.

6

c.

7

d.

8

Discuss
Answer: (c).7
Q65.
For every rod cutting problem there will be a unique set of pieces that give the maximum price.
Discuss
Answer: (b).False
Q66.
Consider the following dynamic programming implementation of the rod cutting problem. Which line will complete the Below code?
#include<stdio.h>
#include<limits.h>
int rod_cut(int *prices, int len)
{
      int max_val[len + 1];
      int i,j,tmp_price,tmp_idx;
      max_val[0] = 0;
      for(i = 1; i <= len; i++)
      {
	   int tmp_max = INT_MIN; // minimum value an integer can hold
	   for(j = 1; j <= i; j++)
	   {
	         tmp_idx = i - j;
	         tmp_price = _____________; //subtract 1 because index of prices starts from 0
	         if(tmp_price > tmp_max)
	           tmp_max = tmp_price;
	    }
	    max_val[i] = tmp_max;
       }
       return max_val[len];
}
int main()
{
       int prices[]={2, 5, 6, 9, 9, 17, 17, 18, 20, 22},len_of_rod = 5;
       int ans = rod_cut(prices, len_of_rod);
       printf("%d",ans);
       return 0;
}

Discuss
Answer: (a).prices[j-1] + max_val[tmp_idx].
Q67.
What is the output of the following program?
#include<stdio.h>
#include<limits.h>
int rod_cut(int *prices, int len)
{
      int max_val[len + 1];
      int i,j,tmp_price,tmp_idx;
      max_val[0] = 0;
      for(i = 1; i <= len; i++)
      {
	   int tmp_max = INT_MIN; // minimum value an integer can hold
	   for(j = 1; j <= i; j++)
	   {
	        tmp_idx = i - j;
	        tmp_price = prices[j-1] + max_val[tmp_idx];//subtract 1 because index of prices starts from 0
	        if(tmp_price > tmp_max)
		  tmp_max = tmp_price;
	   }
	   max_val[i] = tmp_max;
      }
      return max_val[len];
}
int main()
{
      int prices[]={2, 5, 6, 9, 9, 17, 17, 18, 20, 22},len_of_rod = 5;
      int ans = rod_cut(prices, len_of_rod);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (b).27
Q68.
What is the value stored in max_val[5] after the following program is executed?
#include<stdio.h>
#include<limits.h>
int rod_cut(int *prices, int len)
{
      int max_val[len + 1];
      int i,j,tmp_price,tmp_idx; 
      max_val[0] = 0;
      for(i = 1; i <= len; i++)
      {
	   int tmp_max = INT_MIN; // minimum value an integer can hold
	   for(j = 1; j <= i; j++)
	   {
	         tmp_idx = i - j;
	         tmp_price = prices[j-1] + max_val[tmp_idx];//subtract 1 because index of prices starts from 0
	         if(tmp_price > tmp_max)
		    tmp_max = tmp_price;
	   }
	   max_val[i] = tmp_max;
     }
     return max_val[len];
}
int main()
{
      int prices[]={2, 5, 6, 9, 9, 17, 17, 18, 20, 22},len_of_rod = 5;
      int ans = rod_cut(prices, len_of_rod);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (a).12
Q69.
You are given an array of elements where each array element represents the MAXIMUM number of jumps that can be made in the forward direction from that element. You have to find the minimum number of jumps that are required to reach the end of the array. Which of these methods can be used to solve the problem?
Discuss
Answer: (d).All of the mentioned
Q70.
Consider the following array:
{1, 3, 5, 8, 9, 2, 6, 7, 6}

What is the minimum number of jumps required to reach the end of the array?

a.

1

b.

2

c.

3

d.

4

Discuss
Answer: (c).3

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!