adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 16 of 22

Explore more Topics under Data Structures and Algorithms

Q151.
Consider the following assembly line problem.
For the optimal solution which should be the starting assembly line?
time_to_reach[2][3] = {{17, 2, 7}, {19, 4, 9}}
time_spent[2][4] = {{6, 5, 15, 7}, {5, 10, 11, 4}}
entry_time[2] = {8, 10}
exit_time[2] = {10, 7}
num_of_stations = 4
Discuss
Answer: (b).Line 2
Q152.
Consider the following assembly line problem.
For the optimal solution, which should be the exit assembly line?
time_to_reach[2][3] = {{17, 2, 7}, {19, 4, 9}}
time_spent[2][4] = {{6, 5, 15, 7}, {5, 10, 11, 4}}
entry_time[2] = {8, 10}
exit_time[2] = {10, 7}
num_of_stations = 4
Discuss
Answer: (b).Line 2
Q153.
Consider the following assembly line problem.
What is the minimum time required to build the car chassis?
time_to_reach[2][3] = {{17, 2, 7}, {19, 4, 9}}
time_spent[2][4] = {{6, 5, 15, 7}, {5, 10, 11, 4}}
entry_time[2] = {8, 10}
exit_time[2] = {10, 7}
num_of_stations = 4
Discuss
Answer: (d).43
Q154.
Consider the following code.
Which of the following lines should be inserted to complete the below code?
#include<stdio.h>
int get_min(int a, int b)
{
     if(a<b)
        return a;
     return b;
}
int minimum_time_required(int reach[][3],int spent[][4], int *entry, int *exit, int n)
{
     int t1[n], t2[n],i;
     t1[0] = entry[0] + spent[0][0];
     t2[0] = entry[1] + spent[1][0];
     for(i = 1; i < n; i++)
     {
         t1[i] = get_min(t1[i-1]+spent[0][i], t2[i-1]+reach[1][i-1]+spent[0][i]);
         __________;
     }
     return get_min(t1[n-1]+exit[0], t2[n-1]+exit[1]);
}

Discuss
Answer: (a).t2[i] = get_min(t2[i-1]+spent[1][i], t1[i-1]+reach[0][i-1]+spent[1][i])
Q155.
What is the output of the following code?
#include<stdio.h>
int get_min(int a, int b)
{
     if(a<b)
        return a;
     return b;
}
int minimum_time_required(int reach[][3],int spent[][4], int *entry, int *exit, int n)
{
     int t1[n], t2[n], i;
     t1[0] = entry[0] + spent[0][0];
     t2[0] = entry[1] + spent[1][0];
     for(i = 1; i < n; i++)
     {
         t1[i] = get_min(t1[i-1]+spent[0][i], t2[i-1]+reach[1][i-1]+spent[0][i]);
         t2[i] = get_min(t2[i-1]+spent[1][i], t1[i-1]+reach[0][i-1]+spent[1][i]);
     }
     return get_min(t1[n-1]+exit[0], t2[n-1]+exit[1]);
}
int main()
{
    int time_to_reach[][3] = {{6, 1, 5},
                           {2, 4, 7}};
    int time_spent[][4] = {{6, 5, 4, 7},
                        {5, 10, 2, 6}};
    int entry_time[2] = {5, 6};
    int exit_time[2] = {8, 9};
    int num_of_stations = 4;
    int ans = minimum_time_required(time_to_reach, time_spent, entry_time, exit_time, num_of_stations);
    printf("%d",ans);
    return 0;
}
Discuss
Answer: (c).34
Q156.
What is the value stored in t1[2] when the following code is executed?
#include<stdio.h>
int get_min(int a, int b)
{
     if(a<b)
        return a;
     return b;
}
int minimum_time_required(int reach[][3],int spent[][4], int *entry, int *exit, int n)
{
      int t1[n], t2[n],i;
      t1[0] = entry[0] + spent[0][0];
      t2[0] = entry[1] + spent[1][0];
      for(i = 1; i < n; i++)
      {
          t1[i] = get_min(t1[i-1]+spent[0][i], t2[i-1]+reach[1][i-1]+spent[0][i]);
          t2[i] = get_min(t2[i-1]+spent[1][i], t1[i-1]+reach[0][i-1]+spent[1][i]);
      }
    return get_min(t1[n-1]+exit[0], t2[n-1]+exit[1]);
}
int main()
{
     int time_to_reach[][3] = {{6, 1, 5},
                            {2, 4, 7}};
     int time_spent[][4] = {{6, 5, 4, 7},
                        {5, 10, 2, 6}};
     int entry_time[2] = {5, 6};
     int exit_time[2] = {8, 9};
     int num_of_stations = 4;
     int ans = minimum_time_required(time_to_reach, time_spent, entry_time, exit_time, num_of_stations);
     printf("%d",ans);
     return 0;
}
Discuss
Answer: (c).20
Q157.
What is the value stored in t2[3] when the following code is executed?
#include<stdio.h>
int get_min(int a, int b)
{
     if(a<b)
        return a;
     return b;
}
int minimum_time_required(int reach[][3],int spent[][4], int *entry, int *exit, int n)
{
     int t1[n], t2[n],i;
     t1[0] = entry[0] + spent[0][0];
     t2[0] = entry[1] + spent[1][0];
     for(i = 1; i < n; i++)
     {
         t1[i] = get_min(t1[i-1]+spent[0][i], t2[i-1]+reach[1][i-1]+spent[0][i]);
         t2[i] = get_min(t2[i-1]+spent[1][i], t1[i-1]+reach[0][i-1]+spent[1][i]);
     }
     return get_min(t1[n-1]+exit[0], t2[n-1]+exit[1]);
}
int main()
{
    int time_to_reach[][3] = {{6, 1, 5},
                           {2, 4, 7}};
    int time_spent[][4] = {{6, 5, 4, 7},
                        {5, 10, 2, 6}};
    int entry_time[2] = {5, 6};
    int exit_time[2] = {8, 9};
    int num_of_stations = 4;
    int ans = minimum_time_required(time_to_reach, time_spent, entry_time, exit_time, num_of_stations);
    printf("%d",ans);
    return 0;
}
Discuss
Answer: (c).25
Q158.
What is the output of the following code?
#include<stdio.h>
int get_min(int a, int b)
{
      if(a<b)
        return a;
      return b;
}
int minimum_time_required(int reach[][4],int spent[][5], int *entry, int *exit, int n)
{
      int t1[n], t2[n], i;
      t1[0] = entry[0] + spent[0][0];
      t2[0] = entry[1] + spent[1][0];
      for(i = 1; i < n; i++)
      {
          t1[i] = get_min(t1[i-1]+spent[0][i], t2[i-1]+reach[1][i-1]+spent[0][i]);
          t2[i] = get_min(t2[i-1]+spent[1][i], t1[i-1]+reach[0][i-1]+spent[1][i]);
      }
      return get_min(t1[n-1]+exit[0], t2[n-1]+exit[1]);
}
int main()
{
     int time_to_reach[][4] = {{16, 10, 5, 12},
                           {12, 4, 17, 8}};
     int time_spent[][5] = {{13, 5, 20, 19, 9},
                        {15, 10, 12, 16, 13}};
     int entry_time[2] = {12, 9};
     int exit_time[2] = {10, 13};
     int num_of_stations = 5;
     int ans = minimum_time_required(time_to_reach, time_spent, entry_time, exit_time, num_of_stations);
     printf("%d",ans);
     return 0;
}
Discuss
Answer: (d).88
Q159.
Given a string, you have to find the minimum number of characters to be inserted in the string so that the string becomes a palindrome. Which of the following methods can be used to solve the problem?
Discuss
Answer: (d).Both recursion and dynamic programming
Q160.
In which of the following cases will the number of insertions to form a palindrome be minimum?
Discuss
Answer: (d).All of the mentioned

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!