adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 18 of 22

Explore more Topics under Data Structures and Algorithms

Q171.
In which of the following cases, the maximum sum rectangle can be a 1 x 1 matrix containing the largest element?
Discuss
Answer: (d).All of the mentioned
Q172.
Consider a matrix in which all the elements are non-zero(at least one positive and at least one negative element). In this case, the sum of the elements of the maximum sum rectangle cannot be zero.
Discuss
Answer: (a).True
Q173.
Consider the 2×3 matrix {{1,2,3},{1,2,3}}. What is the sum of elements of the maximum sum rectangle?
Discuss
Answer: (c).12
Q174.
Consider the 2×2 matrix {{-1,-2},{-3,-4}}. What is the sum of elements of the maximum sum rectangle?
Discuss
Answer: (b).-1
Q175.
Consider the 3×3 matrix {{2,1,-3},{6,3,4},{-2,3,0}}. What is the sum of the elements of the maximum sum rectangle?
Discuss
Answer: (c).14
Q176.
What is the time complexity of the brute force implementation of the maximum sum rectangle problem?
Discuss
Answer: (d).O(n^4)
Q177.
The dynamic programming implementation of the maximum sum rectangle problem uses which of the following algorithm?
Discuss
Answer: (c).Kadane’s algorithm
Q178.
Consider the following code snippet.
Which of the following lines should be inserted to complete the below code?
int max_sum_rectangle(int arr[][3],int row,int col)
{
      int left, right, tmp[row], mx_sm = INT_MIN, idx, val;
      for(left = 0; left < col; left++)
      {
           for(right = left; right < col; right++)
           {
               if(right == left)
               {
                   for(idx = 0; idx < row; idx++)
                     tmp[idx] = arr[idx][right];
               }
               else
               {
                   for(idx = 0; idx < row; idx++)
                      tmp[idx] += arr[idx][right];
               }
               val = kadane_algo(tmp,row);
               if(val > mx_sm)
                  ______;
           }
      }
      return mx_sm;
}
Discuss
Answer: (c).mx_sm = val
Q179.
What is the output of the following code?
#include<stdio.h>
#include<limits.h>
int max_num(int a, int b)
{
      if(a > b)
        return a;
      return b;
}
int kadane_algo(int *arr, int len)
{
      int ans, sum, idx;
      ans =0;
      sum =0;
      for(idx =0; idx < len; idx++)
      {
          sum = max_num(0,sum + arr[idx]);
          ans = max_num(sum,ans);
      }
      return ans;
}
int max_sum_rectangle(int arr[][5],int row,int col)
{
      int left, right, tmp[row], mx_sm = INT_MIN, idx, val;
      for(left = 0; left < col; left++)
      {
           for(right = left; right < col; right++)
           {
                if(right == left)
                {
                    for(idx = 0; idx < row; idx++)
                     tmp[idx] = arr[idx][right];
                }
                else
                {
                     for(idx = 0; idx < row; idx++)
                       tmp[idx] += arr[idx][right];
                }
                val = kadane_algo(tmp,row);
                if(val > mx_sm)
                mx_sm = val;
           }
      }  
      return mx_sm;
}
int main()
{
       int arr[2][5] ={{1, 2, -1, -4, -20}, {-4, -1, 1, 7, -6}};
       int row = 2, col = 5;
       int ans = max_sum_rectangle(arr,row,col);
       printf("%d",ans);
       return 0;
}

a.

7

b.

8

c.

9

d.

10

Discuss
Answer: (b).8
Q180.
What is the output of the following code?
#include<stdio.h>
#include<limits.h>
int max_num(int a, int b)
{
      if(a > b)
        return a;
      return b;
}
int kadane_algo(int *arr, int len)
{
      int ans, sum, idx;
      ans =0;
      sum =0;
      for(idx =0; idx < len; idx++)
      {
          sum = max_num(0,sum + arr[idx]);
          ans = max_num(sum,ans);
      }
      return ans;
}
int max_sum_rectangle(int arr[][5],int row,int col)
{
      int left, right, tmp[row], mx_sm = INT_MIN, idx, val=0;
      for(left = 0; left < col; left++)
      {
           for(right = left; right < col; right++)
           {
               if(right == left)
               {
                   for(idx = 0; idx < row; idx++)
                      tmp[idx] = arr[idx][right];
               }
               else
               {
                   for(idx = 0; idx < row; idx++)
                      tmp[idx] += arr[idx][right];
               }
               val = kadane_algo(tmp,row);
               if(val > mx_sm)
               mx_sm = val;
           }
      }
      return mx_sm;
}
int main()
{
      int arr[4][5] ={{ 7,  1, -3, -6, -15},
                    { 10,  -6,  3,  -4,  11},
                    { -2, -3, -1,  2, -5},
                    { 3,  0,  1,  0,  3}};
      int row = 4, col = 5;
      int ans = max_sum_rectangle(arr,row,col);
      printf("%d",ans);
      return 0;
}
Discuss
Answer: (b).18

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!