adplus-dvertising

Welcome to the Dynamic Programming MCQs Page

Dive deep into the fascinating world of Dynamic Programming with our comprehensive set of Multiple-Choice Questions (MCQs). This page is dedicated to exploring the fundamental concepts and intricacies of Dynamic Programming, a crucial aspect of Data Structures and Algorithms. In this section, you will encounter a diverse range of MCQs that cover various aspects of Dynamic Programming, from the basic principles to advanced topics. Each question is thoughtfully crafted to challenge your knowledge and deepen your understanding of this critical subcategory within Data Structures and Algorithms.

frame-decoration

Check out the MCQs below to embark on an enriching journey through Dynamic Programming. Test your knowledge, expand your horizons, and solidify your grasp on this vital area of Data Structures and Algorithms.

Note: Each MCQ comes with multiple answer choices. Select the most appropriate option and test your understanding of Dynamic Programming. You can click on an option to test your knowledge before viewing the solution for a MCQ. Happy learning!

Dynamic Programming MCQs | Page 21 of 22

Explore more Topics under Data Structures and Algorithms

Q201.
What is the output of the following code?
#include<stdio.h>
int get_ways(int num_of_dice, int num_of_faces, int S)
{
     int arr[num_of_dice + 1][S + 1];
     int dice, face, sm;
     for(dice = 0; dice <= num_of_dice; dice++)
         for(sm = 0; sm <= S; sm++)
           arr[dice][sm] = 0;
     for(sm = 1; sm <= S; sm++)
         arr[1][sm] = 1;
     for(dice = 2; dice <= num_of_dice; dice++)
     {
         for(sm = 1; sm <= S; sm++)
         {
             for(face = 1; face <= num_of_faces && face < sm; face++)
                 arr[dice][sm] += arr[dice - 1][sm - face];
         }
     }
     return arr[num_of_dice][S];
}
int main()
{
     int num_of_dice = 3, num_of_faces = 4, sum = 6;
     int ans = get_ways(num_of_dice, num_of_faces, sum);
     printf("%d",ans);
     return 0;
}
Discuss
Answer: (a).10
Q202.
What will be the value stored in arr[2][2] when the following code is executed?
#include<stdio.h>
int get_ways(int num_of_dice, int num_of_faces, int S)
{
      int arr[num_of_dice + 1][S + 1];
      int dice, face, sm;
      for(dice = 0; dice <= num_of_dice; dice++)
         for(sm = 0; sm <= S; sm++)
           arr[dice][sm] = 0;
      for(sm = 1; sm <= S; sm++)
           arr[1][sm] = 1;
      for(dice = 2; dice <= num_of_dice; dice++)
      {
          for(sm = 1; sm <= S; sm++)
          {
              for(face = 1; face <= num_of_faces && face < sm; face++)
                  arr[dice][sm] += arr[dice - 1][sm - face];
          }
      }
      return arr[num_of_dice][S];
}
int main()
{
      int num_of_dice = 3, num_of_faces = 4, sum = 6;
      int ans = get_ways(num_of_dice, num_of_faces, sum);
      printf("%d",ans);
      return 0;
}

a.

0

b.

1

c.

2

d.

3

Discuss
Answer: (b).1
Q203.
What is the output of the following code?
#include<stdio.h>
int get_ways(int num_of_dice, int num_of_faces, int S)
{
     int arr[num_of_dice + 1][S + 1];
     int dice, face, sm;
     for(dice = 0; dice <= num_of_dice; dice++)
         for(sm = 0; sm <= S; sm++)
           arr[dice][sm] = 0;
     for(sm = 1; sm <= S; sm++)
         arr[1][sm] = 1;
     for(dice = 2; dice <= num_of_dice; dice++)
     {
         for(sm = 1; sm <= S; sm++)
         {
             for(face = 1; face <= num_of_faces && face < sm; face++)
                 arr[dice][sm] += arr[dice - 1][sm - face];
         }
     }
     return arr[num_of_dice][S];
}
int main()
{
     int num_of_dice = 4, num_of_faces = 6, sum = 3;
     int ans = get_ways(num_of_dice, num_of_faces, sum);
     printf("%d",ans);
     return 0;
}

a.

0

b.

1

c.

2

d.

3

Discuss
Answer: (a).0
Q204.
What is the output of the following code?
#include<stdio.h>
int get_ways(int num_of_dice, int num_of_faces, int S)
{
      int arr[num_of_dice + 1][S + 1];
      int dice, face, sm;
      for(dice = 0; dice <= num_of_dice; dice++)
          for(sm = 0; sm <= S; sm++)
            arr[dice][sm] = 0;
      for(sm = 1; sm <= S; sm++)
         arr[1][sm] = 1;
      for(dice = 2; dice <= num_of_dice; dice++)
      {
          for(sm = 1; sm <= S; sm++)
          {
              for(face = 1; face <= num_of_faces && face < sm; face++)
                 arr[dice][sm] += arr[dice - 1][sm - face];
          }
      }
      return arr[num_of_dice][S];
}
int main()
{
      int num_of_dice = 2, num_of_faces = 6, sum = 5;
      int ans = get_ways(num_of_dice, num_of_faces, sum);
      printf("%d",ans);
      return 0;
}

a.

2

b.

3

c.

4

d.

5

Discuss
Answer: (c).4
Q205.
You are given a boolean expression which consists of operators &, | and โˆง (AND, OR and XOR) and symbols T or F (true or false). You have to find the number of ways in which the symbols can be parenthesized so that the expression evaluates to true. This is the boolean parenthesization problem. Which of the following methods can be used to solve the problem?
Discuss
Answer: (d).All of the mentioned
Q206.
Consider the expression T & F | T. What is the number of ways in which the expression can be parenthesized so that the output is T (true)?

a.

0

b.

1

c.

2

d.

3

Discuss
Answer: (b).1
Q207.
Consider the expression T & F โˆง T. What is the number of ways in which the expression can be parenthesized so that the output is T (true)?

a.

0

b.

1

c.

2

d.

3

Discuss
Answer: (c).2
Q208.
Consider the expression T | F โˆง T. In how many ways can the expression be parenthesized so that the output is F (false)?

a.

0

b.

1

c.

2

d.

3

Discuss
Answer: (b).1
Q209.
Which of the following gives the total number of ways of parenthesizing an expression with n + 1 terms?
Discuss
Answer: (d).nth catalan number
Q210.
What is the maximum number of ways in which a boolean expression with n + 1 terms can be parenthesized, such that the output is true?
Discuss
Answer: (a).nth catalan number

Suggested Topics

Are you eager to expand your knowledge beyond Data Structures and Algorithms? We've curated a selection of related categories that you might find intriguing.

Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!