adplus-dvertising
frame-decoration

Question

What is the chromatic number of the following graph?

a.

2

b.

3

c.

4

d.

5

Answer: (b).3

Engage with the Community - Add Your Comment

Confused About the Answer? Ask for Details Here.

Know the Explanation? Add it Here.

Q. What is the chromatic number of the following graph?

Similar Questions

Discover Related MCQs

Q. A binary operation on a set of integers is defined as x y = x^2 + y^2. Which one of the following statements is TRUE about ?

Q. Consider the set S = {1, ω, ω^2}, where ω and w^2 are cube roots of unity. If * denotes the multiplication operation, the structure (S, *) forms

Q. Which one of the following in NOT necessarily a property of a Group?

Q. Consider the binary relation R = {(x, y), (x, z), (z, x), (z, y)} on the set {x, y, z}. Which one of the following is TRUE?

Q. Let S be a set of n elements. The number of ordered pairs in the largest and the smallest equivalence relations on S are:

Q. How many different non-isomorphic Abelian groups of order 4 are there

Q. Let X, Y, Z be sets of sizes x, y and z respectively. Let W = X x Y. Let E be the set of all subsets of W. The number of functions from Z to E is:

Q. The set {1, 2, 3, 5, 7, 8, 9} under multiplication modulo 10 is not a group. Given below are four plausible reasons. Which one of them is false?

Q. A relation R is defined on ordered pairs of integers as follows: (x,y) R(u,v) if x < u and y > v. Then R is: Then R is:

Q. Let S denote the set of all functions f: {0,1}^4 -> {0,1}. Denote by N the number of functions from S to the set {0,1}. The value of Log2Log2N is ______.

Q. Consider the following relation on subsets of the set S of integers between 1 and 2014. For two distinct subsets U and V of S we say U < V if the minimum element in the symmetric difference of the two sets is in U. Consider the following two statements:

S1: There is a subset of S that is larger than every other subset.
S2: There is a subset of S that is smaller than every other subset.

Which one of the following is CORRECT?

Q. Let G be a group with 15 elements. Let L be a subgroup of G. It is known that L != G and that the size of L is at least 4. The size of L is __________.

Q. If V1 and V2 are 4-dimensional subspaces of a 6-dimensional vector space V, then the smallest possible dimension of V1 ∩ V2 is ______.

Q. There are two elements x, y in a group (G,∗) such that every element in the group can be written as a product of some number of x's and y's in some order. It is known that

x ∗ x = y ∗ y = x ∗ y ∗ x ∗ y = y ∗ x ∗ y ∗ x = e

where e is the identity element. The maximum number of elements in such a group is __________.

Q. Consider the set of all functions f: {0,1, … ,2014} → {0,1, … ,2014} such that f(f(i)) = i, for all 0 ≤ i ≤ 2014. Consider the following statements:

P. For each such function it must be the case that
for every i, f(i) = i.
Q. For each such function it must be the case that
for some i, f(i) = i.
R. Each such function must be onto.

Which one of the following is CORRECT?

Q. Let E, F and G be finite sets. Let X = (E ∩ F) - (F ∩ G) and Y = (E - (E ∩ G)) - (E - F). Which one of the following is true?

Q. Given a set of elements N = {1, 2, ..., n} and two arbitrary subsets A⊆N and B⊆N, how many of the n! permutations π from N to N satisfy min(π(A)) = min(π(B)), where min(S) is the smallest integer in the set of integers S, and π(S) is the set of integers obtained by applying permutation π to each element of S?

Q. Let A, B and C be non-empty sets and let X = (A - B) - C and Y = (A - C) - (B - C). Which one of the following is TRUE?

Q. The set {1, 2, 4, 7, 8, 11, 13, 14} is a group under multiplication modulo 15. The inverses of 4 and 7 are respectively

Q. Let R and S be any two equivalence relations on a non-empty set A. Which one of the following statements is TRUE?