Question
a.
1
b.
2
c.
3
d.
4
Posted under GATE cse question paper Engineering Mathematics
Engage with the Community - Add Your Comment
Confused About the Answer? Ask for Details Here.
Know the Explanation? Add it Here.
Q. If V1 and V2 are 4-dimensional subspaces of a 6-dimensional vector space V, then the smallest possible dimension of V1 ∩ V2 is ______.
Similar Questions
Discover Related MCQs
Q. There are two elements x, y in a group (G,∗) such that every element in the group can be written as a product of some number of x's and y's in some order. It is known that
x ∗ x = y ∗ y = x ∗ y ∗ x ∗ y = y ∗ x ∗ y ∗ x = e
where e is the identity element. The maximum number of elements in such a group is __________.
View solution
Q. Consider the set of all functions f: {0,1, … ,2014} → {0,1, … ,2014} such that f(f(i)) = i, for all 0 ≤ i ≤ 2014. Consider the following statements:
P. For each such function it must be the case that
for every i, f(i) = i.
Q. For each such function it must be the case that
for some i, f(i) = i.
R. Each such function must be onto.
Which one of the following is CORRECT?
View solution
Q. Let E, F and G be finite sets. Let X = (E ∩ F) - (F ∩ G) and Y = (E - (E ∩ G)) - (E - F). Which one of the following is true?
View solution
Q. Given a set of elements N = {1, 2, ..., n} and two arbitrary subsets A⊆N and B⊆N, how many of the n! permutations π from N to N satisfy min(π(A)) = min(π(B)), where min(S) is the smallest integer in the set of integers S, and π(S) is the set of integers obtained by applying permutation π to each element of S?
View solution
Q. Let A, B and C be non-empty sets and let X = (A - B) - C and Y = (A - C) - (B - C). Which one of the following is TRUE?
View solution
Q. The set {1, 2, 4, 7, 8, 11, 13, 14} is a group under multiplication modulo 15. The inverses of 4 and 7 are respectively
View solution
Q. Let R and S be any two equivalence relations on a non-empty set A. Which one of the following statements is TRUE?
View solution
Q. Let f: B → C and g: A → B be two functions and let h = f o g. Given that h is an onto function. Which one of the following is TRUE?
View solution
Q. What is the minimum number of ordered pairs of non-negative numbers that should be chosen to ensure that there are two pairs (a, b) and (c, d) in the chosen set such that "a ≡ c mod 3" and "b ≡ d mod 5" .
View solution
Q. Consider the binary relation:
S = {(x, y) | y = x+1 and x, y ∈ {0, 1, 2, ...}}
The reflexive transitive closure of S is
View solution
Q. The following is the incomplete operation table a 4-element group.
* e a b c
e e a b c
a a b c e
b
c
The last row of the table is
View solution
Q. The inclusion of which of the following sets into
S = {{1, 2}, {1, 2, 3}, {1, 3, 5}, (1, 2, 4), (1, 2, 3, 4, 5}}
is necessary and sufficient to make S a complete lattice under the partial order defined by set containment ?
View solution
Q. Consider the set ∑* of all strings over the alphabet ∑ = {0, 1}. ∑* with the concatenation operator for strings
View solution
Q. Let (5, ≤) be a partial order with two minimal elements a and b, and a maximum element c.
Let P : S → {True, False} be a predicate defined on S.
Suppose that P(a) = True, P(b) = False and
P(x) ⇒ P(y) for all x, y ∈ S satisfying x ≤ y,
where ⇒ stands for logical implication.
Which of the following statements CANNOT be true ?
View solution
Q. Let f : A → B be an injective (one-to-one) function.
Define g : 2^A → 2^B as :
g(C) = {f(x) | x ∈ C}, for all subsets C of A.
Define h : 2^B → 2^A as :
h(D) = {x | x ∈ A, f(x) ∈ D}, for all subsets D of B.
Which of the following statements is always true ?
View solution
Q. Which of the following is true?
View solution
Q. The binary relation S = ф (empty set) on set A = {1, 2, 3} is :
View solution
Q. Consider the following relations:
R1(a,b) iff (a+b) is even over the set of integers
R2(a,b) iff (a+b) is odd over the set of integers
R3(a,b) iff a.b > 0 over the set of non-zero rational numbers
R4(a,b) iff |a - b| <= 2 over the set of natural numbers
Which of the following statements is correct?
View solution
Q. Consider the following statements:
S1: There exists infinite sets A, B, C such that
A ∩ (B ∪ C) is finite.
S2: There exists two irrational numbers x and y such
that (x+y) is rational.
Which of the following is true about S1 and S2?
View solution
Q. A relation R is defined on the set of integers as xRy if f(x + y) is even. Which of the following statement is true?
View solution
Suggested Topics
Are you eager to expand your knowledge beyond Engineering Mathematics? We've curated a selection of related categories that you might find intriguing.
Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!