Question
a.
Every minimum spanning tree of G must contain emin
b.
If emax is in a minimum spanning tree, then its removal must disconnect G
c.
No minimum spanning tree contains emax
d.
G has a unique minimum spanning tree
Posted under GATE cse question paper Engineering Mathematics
Engage with the Community - Add Your Comment
Confused About the Answer? Ask for Details Here.
Know the Explanation? Add it Here.
Q. Let G be an undirected connected graph with distinct edge weight. Let emax be the edge with maximum weight and emin the edge with minimum weight. Which of the following statements...
Similar Questions
Discover Related MCQs
Q. Let G be an undirected graph. Consider a depth-first traversal of G, and let T be the resulting depth-first search tree. Let u be a vertex in G and let v be the first new (unvisited) vertex visited after visiting u in the traversal. Which of the following statements is always true?
View solution
Q. Consider the following statements:
S1: The sum of two singular n × n matrices may be non-singular
S2: The sum of two n × n non-singular matrices may be singular.
Which of the following statements is correct?
View solution
Q. Let f(n) = n^2Logn and g(n) = n (logn)^10 be two positive functions of n. Which of the following statements is correct?
View solution
Q. How many 4-digit even numbers have all 4 digits distinct?
View solution
Q. Let f: A→B be a function, and let E and F be subsets of A. Consider the following statements about images.
S1: f (E ∪ F) = f (E) ∪ f (F)
S1: f (E ∩ F) = f (E) ∩ f (F)
Which of the following is true about S1 and S2?
View solution
Q. Seven (distinct) car accidents occurred in a week. What is the probability that they all occurred on the same day?
View solution
Q. Consider an undirected unweighted graph G. Let a breadth-first traversal of G be done starting from a node r. Let d(r,u) and d(r,v) be the lengths of the shortest paths from r to u and v respectively in G. If u is visited before v during the breadth-first traversal, which of the following statements is correct?
View solution
Q. How many undirected graphs (not necessarily connected) can be constructed out of a given set V = {v1, v2, ... vn} of n vertices?
View solution
Q. The trapezoidal rule for integration give exact result when the integrand is a polynomial of degree:
View solution
Q. The minimum number of colours required to colour the vertices of a cycle with n nodes in such a way that no two adjacent nodes have the same colour is
View solution
Q. If X, then Y unless Z" is represented by which of the following formulae in propositional logic? ("¬" is negation "^" is conjunction, and "→" is implication)
View solution
Q. The decimal value 0.25
View solution
Q. Maximum number of edges in a n - node undirected graph without self loops is
View solution
Q. The Newton-Raphson iteration Xn + 1 = (Xn/2) + 3/(2Xn) can be used to solve the equation
View solution
Q. Four fair coins are tossed simultaneously. The probability that at least one head and one tail turn up is :
View solution
Q. A B+ -tree index is to be built on the Name attribute of the relation STUDENT. Assume that all student names are of length 8 bytes, disk block are size 512 bytes, and index pointers are of size 4 bytes. Given this scenario, what would be the best choice of the degree (i.e. the number of pointers per node) of the B+ -tree?
View solution
Q. Let P(E) denote the probability of the event E. Given P(A) = 1, P(B) = 1/2, the values of P(A | B) and P(B | A) respectively are
View solution
Q. Let A be a sequence of 8 distinct integers sorted in ascending order. How many distinct pairs of sequences, B and C are there such that (i) each is sorted in ascending order, (ii) B has 5 and C has 3 elements, and (iii) the result of merging B and C gives A?
View solution
Q. Let G be an arbitrary graph with n nodes and k components. If a vertex is removed from G, the number of components in the resultant graph must necessarily lie between
View solution
Q. Let f : A → B be an injective (one-to-one) function.
Define g : 2^A → 2^B as :
g(C) = {f(x) | x ∈ C}, for all subsets C of A.
Define h : 2^B → 2^A as :
h(D) = {x | x ∈ A, f(x) ∈ D}, for all subsets D of B.
Which of the following statements is always true ?
View solution
Suggested Topics
Are you eager to expand your knowledge beyond Engineering Mathematics? We've curated a selection of related categories that you might find intriguing.
Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!