Question
S1: f (E ∪ F) = f (E) ∪ f (F)
S1: f (E ∩ F) = f (E) ∩ f (F)
Which of the following is true about S1 and S2?
a.
Only S1 is correct
b.
Only S2 is correct
c.
Both S1 and S2 are correct
d.
None of S1 and S2 is correct
Posted under GATE cse question paper Engineering Mathematics
Engage with the Community - Add Your Comment
Confused About the Answer? Ask for Details Here.
Know the Explanation? Add it Here.
Q. Let f: A→B be a function, and let E and F be subsets of A. Consider the following statements about images. S1: f (E ∪ F) = f (E) ∪ f (F) S1: f (E ∩ F) = f (E) ∩ f (F) Which...
Similar Questions
Discover Related MCQs
Q. Seven (distinct) car accidents occurred in a week. What is the probability that they all occurred on the same day?
View solution
Q. Consider an undirected unweighted graph G. Let a breadth-first traversal of G be done starting from a node r. Let d(r,u) and d(r,v) be the lengths of the shortest paths from r to u and v respectively in G. If u is visited before v during the breadth-first traversal, which of the following statements is correct?
View solution
Q. How many undirected graphs (not necessarily connected) can be constructed out of a given set V = {v1, v2, ... vn} of n vertices?
View solution
Q. The trapezoidal rule for integration give exact result when the integrand is a polynomial of degree:
View solution
Q. The minimum number of colours required to colour the vertices of a cycle with n nodes in such a way that no two adjacent nodes have the same colour is
View solution
Q. If X, then Y unless Z" is represented by which of the following formulae in propositional logic? ("¬" is negation "^" is conjunction, and "→" is implication)
View solution
Q. The decimal value 0.25
View solution
Q. Maximum number of edges in a n - node undirected graph without self loops is
View solution
Q. The Newton-Raphson iteration Xn + 1 = (Xn/2) + 3/(2Xn) can be used to solve the equation
View solution
Q. Four fair coins are tossed simultaneously. The probability that at least one head and one tail turn up is :
View solution
Q. A B+ -tree index is to be built on the Name attribute of the relation STUDENT. Assume that all student names are of length 8 bytes, disk block are size 512 bytes, and index pointers are of size 4 bytes. Given this scenario, what would be the best choice of the degree (i.e. the number of pointers per node) of the B+ -tree?
View solution
Q. Let P(E) denote the probability of the event E. Given P(A) = 1, P(B) = 1/2, the values of P(A | B) and P(B | A) respectively are
View solution
Q. Let A be a sequence of 8 distinct integers sorted in ascending order. How many distinct pairs of sequences, B and C are there such that (i) each is sorted in ascending order, (ii) B has 5 and C has 3 elements, and (iii) the result of merging B and C gives A?
View solution
Q. Let G be an arbitrary graph with n nodes and k components. If a vertex is removed from G, the number of components in the resultant graph must necessarily lie between
View solution
Q. Let f : A → B be an injective (one-to-one) function.
Define g : 2^A → 2^B as :
g(C) = {f(x) | x ∈ C}, for all subsets C of A.
Define h : 2^B → 2^A as :
h(D) = {x | x ∈ A, f(x) ∈ D}, for all subsets D of B.
Which of the following statements is always true ?
View solution
Q. Consider the set {a, b, c} with binary operators + and × defined as follows :
+ a b c × a b c
a b a c a a b c
b a b c b b c a
c a c b c c c b
For example, a + c = c, c + a = a, c × b = c and b × c = a. Given the following set of equations :
(a × x) + (a × y) = c
(b × x) + (c × y) = c
The number of solution(s) (i.e., pair(s) (x, y)) that satisfy the equations is :
View solution
Q. Consider two languages L1 and L2 each on the alphabet ∑. Let f : ∑ → ∑ be a polynomial time computable bijection such that (∀ x) [x ∈ L1 iff f(x) ∈ L2]. Further, let f^-1 be also polynomial time computable. Which of the following CANNOT be true?
View solution
Q. In a permutation a1.....an of n distinct integers, an inversion is a pair (ai, aj) such that i < j and ai > aj. If all permutations are equally likely, what is the expected number of inversions in a randomly chosen permutation of 1.....n ?
View solution
Q. In a permutation a1.....an of n distinct integers, an inversion is a pair (ai, aj) such that i < j and ai > aj. What would be the worst case time complexity of the Insertion Sort algorithm, if the inputs are restricted to permutations of 1.....n with at most n inversions?
View solution
Q. The cube root of a natural number n is defined as the largest natural number m such that m^3 ≤ n. The complexity of computing the cube root of n (n is represented in binary notation) is:
View solution
Suggested Topics
Are you eager to expand your knowledge beyond Engineering Mathematics? We've curated a selection of related categories that you might find intriguing.
Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!