adplus-dvertising
frame-decoration

Question

Consider the following relations:

R1(a,b) iff (a+b) is even over the set of integers
R2(a,b) iff (a+b) is odd over the set of integers
R3(a,b) iff a.b > 0 over the set of non-zero rational numbers
R4(a,b) iff |a - b| <= 2 over the set of natural numbers

Which of the following statements is correct?

a.

R1 and R2 are equivalence relations, R3 and R4 are not

b.

R1 and R3 are equivalence relations, R2 and R4 are not

c.

R1 and R4 are equivalence relations, R2 and R3 are not

d.

R1, R2, R3 and R4 are all equivalence relations

Answer: (b).R1 and R3 are equivalence relations, R2 and R4 are not

Engage with the Community - Add Your Comment

Confused About the Answer? Ask for Details Here.

Know the Explanation? Add it Here.

Q. Consider the following relations: R1(a,b) iff (a+b) is even over the set of integers R2(a,b) iff (a+b) is odd over the set of integers R3(a,b) iff a.b > 0 over the set of...

Similar Questions

Discover Related MCQs

Q. Consider the following statements:

S1: There exists infinite sets A, B, C such that
A ∩ (B ∪ C) is finite.
S2: There exists two irrational numbers x and y such
that (x+y) is rational.

Which of the following is true about S1 and S2?

Q. A relation R is defined on the set of integers as xRy if f(x + y) is even. Which of the following statement is true?

Q. Let R be the relation on the set of positive integers such that aRb if and only if a and b are distinct and have a common divisor other than 1. Which one of the following statements about R is True?

Q. The cardinality of the power set of {0, 1, 2 . . ., 10} is _________.

Q. Consider two relations R1(A, B) with the tuples (1, 5), (3, 7) and R1(A, C) = (1, 7), (4, 9). Assume that R(A,B,C) is the full natural outer join of R1 and R2. Consider the following tuples of the form (A,B,C)

a = (1, 5, null),
b = (1, null, 7),
c = (3, null, 9),
d = (4, 7, null),
e = (1, 5, 7),
f = (3, 7, null),
g = (4, null, 9).

Which one of the following statements is correct?

Q. The number of onto functions (surjective functions) from set X = {1, 2, 3, 4} to set Y = {a, b, c} is ________________

Q. Let X and Y denote the sets containing 2 and 20 distinct objects respectively and F denote the set of all possible functions defined from X and Y. Let f be randomly chosen from F. The probability of f being one-to-one is _________.

Q. Let R be a relation on the set of ordered pairs of positive integers such that ((p, q), (r, s)) ∈ R if and only if p–s = q–r. Which one of the following is true about R?

Q. Let R1 be a relation from A = {1, 3, 5, 7} to B = {2, 4, 6, 8} and R2 be another relation from B to C = {1, 2, 3, 4} as defined below:

1. An element x in A is related to an element y in B (under R1) if x + y is divisible by 3.
2. An element x in B is related to an element y in C (under R2) if x + y is even but not divisible by 3.

Which is the composite relation R1R2 from A to C?  

Q. Let f be a function from a set A to a set B, g a function from B to C, and h a function from A to C, such that h(a) = g(f(a)) for all a ∈ A. Which of the following statements is always true for all such functions f and g?  

Q. Let A be a set with n elements. Let C be a collection of distinct subsets of A such that for any two subsets S1 and S2 in C, either S1 ⊂ S2 or S2⊂ S1. What is the maximum cardinality of C?

Q. A binary relation R on N x N is defined as follows:

(a, b) R (c, d) if a <= c or b <= d.

Consider the following propositions:
P: R is reflexive
Q: R is transitive

Which one of the following statements is TRUE?

Q. For the set N of natural numbers and a binary operation f : N x N → N, an element z ∊ N is called an identity for f, if f (a, z) = a = f(z, a), for all a ∊ N. Which of the following binary operations have an identity?

1. f (x, y) = x + y - 3
2. f (x, y) = max(x, y)
3. f (x, y) = x^y

Q. Given a boolean function f (x1, x2, ..., xn), which of the following equations is NOT true

Q. Consider the following first order logic formula in which R is a binary relation symbol. ∀x∀y (R(x, y)  => R(y, x)) The formula is

Q. Let P, Q and R be sets let Δ denote the symmetric difference operator defined as PΔQ = (P U Q) - (P ∩ Q). Using Venn diagrams, determine which of the following is/are TRUE? PΔ (Q ∩ R) = (P Δ Q) ∩ (P Δ R) P ∩ (Q ∩ R) = (P ∩ Q) Δ (P Δ R)

Q. What is the cardinality of the set of integers X defined below? X = {n | 1 ≤ n ≤ 123, n is not divisible by either 2, 3 or 5} ?

Q. Let A = {a, b, c, d }, B = { p, q, r, s } denote sets. R : A –> B, R is a function from A to B. Then which of the following relations are not functions ?

(i) { (a, p) (b, q) (c, r) }
(ii) { (a, p) (b, q) (c, s) (d, r) }
(iii) { (a, p) (b, s) (b, r) (c, q) }

Q. Let A = { 1,2,3,4,…….∞ } and a binary operation ‘+’ is defined by a + b = ab ∀ a,b ∈ A. Which of the following is true ?

Q. The minimum number of cards to be dealt from an arbitrarily shuffled deck of 52 cards to guarantee that three cards are from some same suit is