Question
a.
To aid humans in detection of defects
b.
As a preprocessing step for automated inspections
c.
All of the mentioned
d.
None of the mentioned
Posted under Digital Image Processing (DIP)
Engage with the Community - Add Your Comment
Confused About the Answer? Ask for Details Here.
Know the Explanation? Add it Here.
Q. Gradient is used in which of the following area(s)?
Similar Questions
Discover Related MCQs
Q. Gradient have some important features. Which of the following is/are some of them?
View solution
Q. An image has significant edge details. Which of the following fact(s) is/are true for the gradient image and the Laplacian image of the same?
View solution
Q. The Laplacian in frequency domain is simply implemented by using filter __________
View solution
Q. Assuming that the origin of F(u, v), Fourier transformed function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y prior to taking the transform of the image. If F and f are of same size, then what does the given operation is/are supposed to do?
View solution
Q. Assuming that the origin of F(u, v), Fourier transformed function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y prior to taking the transform of the image. If F and f are of same size M*N, where does the point (u, v) =(0,0) shifts?
View solution
Q. Assuming that the origin of F(u, v), Fourier transformed function of f(x, y) an input image, has been correlated by performing the operation f(x, y)(-1)x+y prior to taking the transform of the image. If F and f are of same size M*N, then which of the following is an expression for H(u, v), the filter used for implementing Laplacian in frequency domain?
View solution
Q. Computing the Fourier transform of the Laplacian result in spatial domain is equivalent to multiplying the F(u, v), Fourier transformed function of f(x, y) an input image, and H(u, v), the filter used for implementing Laplacian in frequency domain. This dual relationship is expressed as _________
View solution
Q. An enhanced image can be obtained as: g(x,y)=f(x,y)-∇^2 f(x,y), where Laplacian is being subtracted from f(x, y) the input image. What does this conclude?
View solution
Q. Why is scaling of Laplacian filtered images necessary?
View solution
Q. Which of the following fact is true for the masks that includes diagonal neighbors than the masks that doesn’t?
View solution
Suggested Topics
Are you eager to expand your knowledge beyond Digital Image Processing (DIP)? We've curated a selection of related categories that you might find intriguing.
Click on the categories below to discover a wealth of MCQs and enrich your understanding of Computer Science. Happy exploring!