adplus-dvertising
frame-decoration

Question

Find the solution of x^2 ≡ 2 mod 11

a.

No Solution

b.

x ≡ 9 mod 11

c.

x ≡ 4 mod 11

d.

x ≡ 4 mod 11 and x ≡ 7 mod 11

Answer: (a).No Solution

Engage with the Community - Add Your Comment

Confused About the Answer? Ask for Details Here.

Know the Explanation? Add it Here.

Q. Find the solution of x^2 ≡ 2 mod 11

Similar Questions

Discover Related MCQs

Q. Find the set of quadratic residues in the set –

Z11* = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Q. In Zp* with (p-1) elements exactly:

(p – 1)/2 elements are QR and
(p – 1)/2 elements are QNR.

Q. Find the set of quadratic residues in the set –

Z13* = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12}

Q. Euler’s Criterion can find the solution to x2 ≡ a (mod n).

Q. Find the solution of x2≡ 16 mod 23

Q. Find the solution of x^2 ≡ 3 mod 23

Q. Find the solution of x^2 ≡ 7 mod 19

Q. “If we use exponentiation to encrypt/decrypt, the adversary can use logarithm to attack and this method is very efficient. “

Q. Find the order of the group G = <Z12*, ×>?

Q. Find the order of the group G = <Z21*, ×>?

Q. Find the order of group G= <Z20*, x>

Q. Find the order of group G= <Z7*, x>

Q. “In the group G = <Zn*, ×>, when the order of an element is the same as order of the group (i.e. f(n)), that element is called the Non – primitive root of the group.”

Q. In the order of group G= <Z20*, x>, what is the order of element 17?

Q. 1 2 3 4 5 6 7 order7. The order of group G= <Z9, x> , primitive roots of the group are –

Q. Which among the following values: 17, 20, 38, and 50, does not have primitive roots in the group G = <Zn*, ×>?

Q. Find the number of primitive roots of G=<Z11*, x>?

Q. Find the primitive roots of G=<Z11*, x>?.

Q. “If a group has primitive roots, it is a cyclic group”

Q. Find the primitive roots of G = <Z10*, ×>.