adplus-dvertising
frame-decoration

Question

What types of tasks are strengths of machine learning algorithms in the context of Big Data?

a.

Predictive and descriptive tasks

b.

Rote learning and memorization

c.

Structured data analysis only

d.

Human-driven data exploration

Posted under Big Data Computing

Answer: (a).Predictive and descriptive tasks Explanation:Machine learning algorithms are strong at performing predictive and descriptive tasks, which are valuable for extracting knowledge and meaning from Big Data.

Engage with the Community - Add Your Comment

Confused About the Answer? Ask for Details Here.

Know the Explanation? Add it Here.

Q. What types of tasks are strengths of machine learning algorithms in the context of Big Data?

Similar Questions

Discover Related MCQs

Q. What is the primary purpose of decision tree learning?

Q. How are decision tree algorithms like ID3 and C4.5 used in the learning process?

Q. What measures are used to determine the selection of attributes for splitting in decision trees?

Q. What happens when an instance is incorrectly classified in the decision tree learning process?

Q. What is one of the improved versions of the ID3 decision tree algorithm?

Q. What does the "rxDTree" function in Revolution R* Enterprise 6.1 software provide for decision tree learning?

Q. How does data parallelism work in the context of Big Data decision trees?

Q. What is the potential drawback of using the "rxDTree" function for decision tree construction?

Q. What are decision trees converted into to improve readability?

Q. What is one way to obtain a more readable representation of a decision tree?

Q. What is the covering approach in rule induction?

Q. What is the main difference between clustering and classification?

Q. How are clusters defined in clustering?

Q. Which metric is commonly used to calculate distances in the k-means clustering algorithm?

Q. What is the challenge associated with the k-means algorithm?

Q. How can the challenge associated with the k-means algorithm be mitigated?

Q. Which category of clustering algorithms creates a nested set of clusters?

Q. What is the primary difference between agglomerative and divisive hierarchical clustering?

Q. In logistic regression, what is the dependent variable typically referred to as?

Q. What does the conditional probability of a category given the input represent in logistic regression?